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ABSTRACT

It is shown that the dual of the problem of minimizing the 2-norm of the

primal and dual optimal variables and slacks of a linear program, can be

transformed into an unconstrained minimization of a convex, parameter-free,

globally differentiable, piecewise quadratic function with a Lipschitz

continuous gradient. If the slacks are not included in the norm minimization,

one obtains a minimization problem with a convex, parameter-free, quadratic

objective function subject to nonnegativity constraints only.
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SIGNIFICANCE AND EXPLANATION

The linear programming problem is that of maximizing a linear objective

function subject to linear inequalities and equalities. Such problems are

usually solved by methods which move from a vertex to a higher neighboring

vertex in the feasible region and terminate in a finite number of steps. In

this report we show how the smallest solution of a linear program can be

obtained by the completely unconstrained minimization of a valley-like smooth

function. This reformulation should enable us to use other techniques to

solve this fundamental problem.
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LEAST-NORM LINEAR PROGRAMMING SOLUTION AS AN UNCONSTRAINED MINIMIZATION PROBLEM

0. L. Mangasarian

1. Introduction

In general the primal-dual solution to a linear program is not unique and sometimes

the set of such solutions is unbounded in which case the problem is unstable [18]. It

seems reasonable then that given a linear program one would be interested in finding a

unique solution with some least norm property. In this work we will show that if one

chooses that optimal solution which minimizes the 2-norm of the primal and dual optimal

variables and slacks one is led to an unconstrained minimization of a convex, parameter-

free, globally differentiable, piecewise-quadratic function with a Lipschitz continuous

gradient. If the slacks are not included in the norm minimization, one obtains a minimiza-

tion problem with a convex, parameter-free, quadratic objective function subject to

nonnegativity constraints only. These reformulations of the original linear program can be

solved by techniques other than the simplex method and will lead to a unique least-norm

solution of the problem.

We shall consider the canonical linear program

T
maximize c x subject to y = -Ax + b, (x,y) > 0 (1)

n+m
(x,y) 

R

where c and b are given vectors in the real dimensional Euclidean spaces Rn and Rm

respectively, A is a given m x n real matrix and the superscript T denotes the

transpose. The dual linear program [3] associated with (1) is

minimize b Tu subject to v = ATu - c, (u,v) > 0 * (2)

(uv) Rm+n

It is well known [31 that solving either (1) or (2) is equivalent to solving both (1) and

(2) which in turn is equivalent to the following linear complementarity problem [2]:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This

material is based upon work supported by the National Science Foundation under

Grant No. MCS-7901066.
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Find (zw) in R
2
k such that

T T
w =z + q 0, z > 0, z w q z 0 (3)

where

k - n + i, M 0 q L , z , w [ (4)
-A 0 b u y

Note that M is a skew symmetric matrix satisfying M + M
T 

- 0 and hence zTMz = 0 for

any z in Rk . A principal purpose of this work is to show (Theorem 1) that the least 2-

norm solution (z,w) of problem (3) can be obtained by solving the following unconstrained

minimization problem in R k +1

minimize f(r,a) (5)
k+1

where ro

T1 2 1 2
f(r,a) q= qr +- f" (Mr - O~q)+l +- I(-r)++2 2 l2 .(6)

Here I*12 denotes the 2-norm and for t in Rk, (t)+ denotes a vector in Rk with

omponents ((t)+) i = max{t ,0), i = 1,...,k, where ti  is the ith omponent of t. It

is easy to verify that f(r-a) is a convex, globally differentiable function on R
k+

l
. 

We

will also show that f has a Lipschitz continuous gradient on R 
k+ 1

. In fact, it will be

shown that the unconstrained minimization problem (5) is equivalent to the dual of the

least-norm problem

minimize 2 Iz,w*2 1w = M + q > 0, z > 0, q z - 0} . (7)

2k 1zw21 =(z ,w)E R k

We will also show the value a, where (r,u) is a solution of the unoonstrained problem

(5), plays an important role in interpreting the stability of least-norm solution of (3)

and hence of (1)-(2) (Corollary 3).

By considering the dual of a slightly different least-norm problem

1 2 T
minimize 2 q Z 0, z > 0, q z - 0) (8)

zeR

we are led (Theorem 2) to the following convex quadratic minimization problem with
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nonnegetivity constraints only

minimize g(s,t,8) (9)

(s,t,O)e R
2 k+I

(s,t,B'>0

where

T I T qt12g(s,t,B) :-q a + -i IN a -q +- . (10)

Here again the value 8 of 0 for which (9) has a solution can be interpreted as a

stability measure for the dual linear program. '1)-(2) (Corollary 5).

We note that since the conditions Mz + q > 0, z > 0 imply that qTz > 0 it follows

that in both problems (7) and (8) the last constraint qTz - 0 can be written in the

equivalent form q Tz < 0. Thus the Lagrange multiplier associated with qTz - 0 is

implicitly nonnegative.

The formulations (5) and (9) have computational implications. Thus the unconstrained

minimization problem (5) can be solved by gradient and possibly other methods (8] while the

quadratic problem (9) can be solved by, among others, iterative successive overrelaxation

methods (11]. These aspects are discussed in Section 4.

-3-



2. The least-norm linear programming solution as an unconstrained minimization problem

We begin by establishing the following useful preliminary result.

Lemma 1. Let S C Rk , let h:S - R , let O:R
k 

. R and let % be a nondecreasing

function from the nonnegative real line into R. Let 1oi be any monotonic norm on R

that is for a and b in R , lal < Ebi whenever Dais < Ib i, i - i,...,. Then

(x, y - h(x)+ - h(x)) solves

min 8(x) + O(|h(x) + y|)

Ci; x solves min O(x + q(Ih(x)+l) + => >x
xes

and the two minima are equal

(ii) x solves min 6(x) + (|h(x) +1) Cx,y) solves
xeS

min 6(x) + P(Ih(x) + yl)
E S

and the to minima are equal >0 xe

(iii) (,y- h(x)+ - h(x)) solves Cx,y) solves

mi n(x) + P(lh(x) + yl) min Ox) + (Ih(x) + yE)
xeS xeS
y>O y>0

Proof. Ci) Let x solve: min 6x + P(lh(x) +), let y= h(x) - h(i), let x e S
xE S

and let y > 0. Then

9(x) + p(Ih(x) + yl) - O(x) - P(Ih(x) + yl)

Ox) + O(lh(x) + yl) - O(x) - P(lh(x) +) (By definition of y)

+> O(x) + ¢(lh(x) + yE) - 6(x) - ¢(Eh~x)+i; (By definition of x)

> 0 (By norm monotonicity, nondecreasing property of € and

h i(x + y > h i(x)+ , I I.

The two minima are equal by the definition of y.

-4-
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(ii) Let (x,y) solve min 8(x) + P(Ih(x) + yl) and let x e S. Then
xeS ,y>O

8(x) + o(Uh(x) 1) < O(x) + O(h(x) + yn)

(By norm monotonicity, nondecreasing property of p

and Ih x) + -yI > h (x)+ , i- 1.... )
i i i

W8(x) + CIh(x) + yl) for y > 0

(By definition of (x,y))

= 8(x) + P(Ih(x) +) (Set y = h(x) - h(x) > 0)

The two minima are equal because by part (i), x and y = h(x)+ - h(x) solve

min 8(x) + s(lh(x) + yE).
xeS
y.0

(iii) This part follows by ombining parts (i) and (ii) of the lemma. 13

we are ready now to establish our first principal result.

Theorem 1. The dual linear programs (1) and (2) are solvable if and only if the

unconstrained minimization problem (5) is solvable. For any solution (r,a) of (5) the

point (z,w) defined by

[{I = z :q(T +- q := (:= (-r)+ 11)

is the unique point in R2 k  which solves (3), the dual linear programs (M)-(2) and the

minimum-norm problem (7) . Furthermore
1 2 T

min f(r,) - m z,w2w = Mz + q 0, z > 0, q z = 0} . (12)

(r,a ) Rk
+ 1  (z,w)f R

2 k

Proof. If the solution set of (3) is nonempty then by quadratic programming duality [4,10]

we have that

-5-
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rmin {. zw w - Mz - q 0, w > 0, z > 0, q z - 0)
2k2 2 =

(z,w)e R
1 T2 1 2 T

{- IMTr - Iq + d,2 - Il-r + al2 - q Trl(a,d) > 0) (13): - max 2 2=

(r,a, d,c)e R 3 k + 1

1 - 12 1 r)+ q Tr

(r,a)eR 

+ l

(By Lemma 1)

ain f(r,a)

(r,ae R

Suppose first that the dual linear programs (1)-(2) are solvable. Then the solution

set of (3) is nonempty and contains a unique (z,w) in R2 k that solves (7). By Dorn's
duality theorem [4,10 Theorem 8.2.4] there exists (r,a,d,) in R3k+1 that solves (13)

above and by Lemma 1, (r,u) solves (5) and

1 -- 2
2 "w2 - f(ra)

Conversely now suppose that (r,a) solves (5). Then again by Lemma 1, (r,a) and

d= (M r- q)+ - (Mr-eq), a= (-r) +- (-r)

solve (13) and by Dorn's strict converse duality theorem [4,10 Theorem 8.2.5]

z -q + d - (M r -

w= -r + a
=  

+

is the unique point in R2 k  which solves (7) and hence the dual linear programs (M)-(2).

We again have that

f(r,a) : - 1 w1
2

o

Because problem (5) is an unconstrained minimization problem with a convex

differentiable objective function its solution can be achieved by setting the gradient

Vf(r,) equal to zero. We thus have the following.

-6-



Corollary 1 The dual linear programs (1) and (2) are solvable if and only if there exist

(r,a) e Rk + 1 satisfying

< q + M(MTr - aq)+ - (-r)+ = 0 (14)

-q T(HTr - tq)+ . 0 • (15)

For any (ra) satisfying (14)-(15) the point (z,w) defined by (11) is the unique point

in R2 k which solves (3), the dual linear programs (l)-(2) and the minimum-norm problem

(7).

An interesting property of the unconstrained minimization problem (5) is that the

minimization over the variable a can be dispensed with if a is chosen sufficiently

large. This can be established by using the perturbation results of linear programming

[13] as follows.

Corollary 2. Let {zIMz + q > 0, z > 0) be nonempty and let f be defined by (6). There

exists an a > 0 such that
=4

min f(r,a) W (a) for a ) a (16)

(r,a)eR
k + 1

where

o(a) min f(r,a) (17)
k

reR

is well defined, continuous and convex for all real a and

)= - min { Iz,w2 1w = Mz + q > 0, z > 01 , (18)

(zwe
2k 2 2

( ,w-7-
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Proof.

min f(r,a) = - min ( 1 z,w w Mz + q 0> , z > O, qTz _< 01 (20)

(r,a) R
k + 1  (z,w)f R

2 k

(By (12))
min {aq z + z,w2 J w = Mz + q 0, z > 01 (21)

(z,w)c R
2
k 2 2

for a > a for some a > 0 (By [13, Theorem 1 and since

T
min{q ziw = Mz + q > 0, z > 01 = 0)
Zw

"MT max 1 2 1 I 2r+at
2 -

qT ri(a,d) > 01 (22)

3max 2 2 2 2r(22

(r,a,d) R
3k

(By quadratic programming duality [4,10))

= min f(r,a) (By Lemma 1) (23)

k
reR

= p(a) . (24)

This establishes (16) and (19). Note that in the above equalities the restriction of a

to a > a is only needed for the equality between (20) and (21), otherwise for the

equalities between (21) and up to (24) a is unrestricted. Because the quadratic program

(21) is feasible and its dual (22) is also feasible it follows that the objective function

of (21) is bounded below [4,10 Theorem 8.2.3] and hence (21) has a solution for each real

a [5]. By virtue of the equality between (21) and (24) for all real a it follows that

4(a) is well defined for all real a. That () is convex and continuous for all real

a follows from the parametric problem representation (21) of ;(a) [9, Theorem 1].

Finally (18) follows by setting a = 0 in (21). 17

By using results of perturbation theory of convex programs (6,191 we can give a useful

stability interpretation of a, where (r,a) solves (5).

Corollary 3. Let the linear program (1) be solvable. For 6 _ 0 let (z(6),w(6)) be the

unique solution of the following perturbation of the minimum-norm problem (7)

-8-



1 2

mi { Mz,wE21w = Mz + q > 0, z > 0, q Tz < 61 (25)
2k2 2

(z,w)e R

Then for any a such that (r, ) solves (5)

2 2

and if q 0 0

0 < 1z(0),w(0) 2 - 1z(6),w(6)H < a6 (27)
2 z(0),w(0)U 27

Proof. The first inequality of (26) is obvious because the feasible region of (25) for

6 > 0 contains the feasible region for 6 - 0. The second inequality of (26) follows

from the standard result of perturbation theory for convex programs [6 Theorem 1, 19

Theorem 29.1] that -a, which is the negative of an optimal multiplier of (25) asscciated

T2
with q z < 6 for 6 = 0, is a subgradient of the convex function _ lz(6),w(6)I at

2 2

6=0.

To establish (27) we note that for 6 > 0, (z(6),w(6)) is also the unique solution of

the convex problem

min {Uz,wI 2 Jw = Mz + q > 0, z > 0, q z < (28)

(z,w)e R
2 k

and if q * 0, then a/az(O),w(o)H2  is an optimal multiplier associated with qTz

for 6 - 0 in the optimization problem (28).

Inequality (26) states that for an error of no more than 6 in satisfying the

equality condition between the primal and dual objective functions, that is

0 < -c Tx + b u = q Tz < 6, the square of the 2-norm of the smallest optimal vector of

primal and dual variables and slacks of the linear program (1) differs by no more than

2a6 from the square of the 2-norm of the corresponding optimal vector for which q
T

z 0.

It follows that the smaller a is the more stable is the linear program (1) under errors

in its minimum value. Linear programs with large a would in general be harder to solve

than those with small a. Computational experience in (12] where a perturbation parameter

C was used which is related to 1 bears out this observation. The least value a such
a

-9-



that (r,c) is a solution of (5) may be thought of as a unique stability parameter

associated with the linear program (1), and because of (16), it may be defined as

min(al(a) = (c), 0 < a < a}. Because the convex set {cit(a) = (a), 0 < a < a} is

compact, in fact a closed line interval, u is well defined. By the equivalence between

(20) and (24), c can also be defined as the least nonnegative multiplier associated with

Tthe constraint q z < 0 in the quadratic program (20). Hence (26) and (27) can be

sharpened by replacing a by a. Related but different results for perturbations of

linear programs are given in [171.

Going back to the unconstrained minimization problem (5), it is straightforward to

show that its objective function f(ra) has a Lipschitz continuous gradient if we make

use of the following property of monotonic norms due to Y.-C. Cheng [1].

Lemma 2 (Cheng). For any monotonic norm 1o1 on R and any a and b in R it

follows that

a+ - b+1 < Ia - bl .

This lemma is a direct consequence of the inequality

lai - b I - 1(a )+ - (b)+l > 0, i = 1,...J

2. 1 i+ 3.

and the norm monotonicity. The Lipschitz continuity of Vf(r,a) can be easily established

by using Lemma 2 and the dual vector norm 1.1' associated with any given vector norm

1-1 on R£ and defined by NxI' = sup x Ty for x in R and from which follows the
it

yeR

IyI=
1

Tgeneralized Cauchy inequality x y < lxl-lyI' for all x and y in R .  For

> p, q > 1 and (l/p) + (/q) = 1 and any x in R , the p-norm

XI:= ( IxiIP) 1 /P and the q-norm Uxq are monotonic and dual norms to each other

[7,19]. By using the generalized Cauchy inequality and Lemma 2 it is a straightforward

algebraic exercise to obtain the following.

Lemma 3. Let 1.1 be any monotonic norm on Rk+ 1 and let I°|' be its dual norm. Then

1 1 2 2 1 1 2 2
UVf(r ,cI) - Vf(r ,a )h < LI(r1,ci) - (r ,a )I

for all (r ,c a) and (r 2, a) in R+1 where

-10-



L =1+ 1m1 
2 + IMI(IqI + IqIl) + IqI*IqI' (29)

For the 2-normd1-

L L 2 1 (141 2 +1l q
2

(30)



3. The least-norm linear programming solution as the minimization of a nonneatively

constrained quadratic function

An entirely analogous development to that of Section 2 but which is based on (8)

rather than (7) leads to the following results the proofs of which are omitted.

Theorem 2. The dual linear programs (1) and (2) are solvable if and only if the quadratic

program (9) is solvable. For any solution (s,t,B) of (10) the point (z,w) defined by

- + t, w:=z+q (31)

is the unique point in R2 k  which solves (3), the dual linear programs (M)-(2) and the

minimum-norm problem (8). Furthermore

min g(s'tB) - min j1 jz2jw M ,z 0 Tz 01} (32)

(S,t,B)eR
2k+l (z,w)eR

2k 2 2

(s,t,B)>O

Corollary 4. Let {zIMz + q >_ 0, z > 01 be nonempty and let g be defined by (10).

There exists a B > 0 such that

min g(s,t,S) = *(0) for 0 > B (33)

(s,t,B)eR
2k+l

(s,t,O)>o

where

t= min g(s,t,O)

(S,t)eR 2 k

(s,t)>O

is well defined, continuous and convex for all real B and

*() = - min {2I 2z2 IMz + q > 0, z > 01

ze R

-mmn (-1 IrEIM} + q 1 0, z > 0, q T 01 for B > B
ze Rk  2

-12-
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Corollary S. Let the linear program (1) be solvable. For 6 > 0 let z(6) be the unique

solution of the following perturbation of the minimum norm problem (8)

m 2n {_2I lMz + q > 0, z > 0, q Tz < .

Then for any 8 such that (s,tS) solves (9)

o < Iz(O)I 2  Iz(6) 2 2 286
- 2 2-

and if q 0

0 < Iz(O)I - Iz(6)l < 86
- 2 2 i Iz(0)I2

The least value ; such that (s,t,8) is a solution of (9) may also be considered a

stability parameter for the linear program (1) and may be defined as min{SI*(S) - *(g),

0 < 8 < b} where W is defined in (33). Alternatively ; may be taken as the least

nonnegative multiplier associated with the constraint q z < 0 in the quadratic program

(8).

iI

-13-
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4. Computational implications

The reformulation of the linear program (1) as an unconstrained minimization problem

(5) or as a quadratic program (9) is not merely of theoretical interest but may also have

computational potential. For example, the simple gradient algorithm [8,16]

j+1 j+1 i i ± i
(r+1i+) = Cri'ui) -(rVf r ), i - 0,1,...

where (34)

0 < y < 2/L 2  and L2  I + (IM| 2 + Iql 2)2

i i
will generate a sequence ((r , a )), i = 0,1,..., in Rk

+ 1 
starting from any point

(r0,a
0
) in R which will converge to a solution (r a) of (5) (16] if the linear

program (1) has a solution. The convergence however may be slow and the error is bounded

by [16]
i 1

£ < (35)
( 0 )-1 + i

i i -- 2 -L 2 ) I
where c := f(r ,a } - f(r,o) and v = 0 -0 - -2 " It would be very

21(r ,u ) - (r,c )I2
interesting to develop faster and possibly finite methods for solving (5).

Similarly problem (9) may be solved by the successive overrelaxation (SOR) or other

iterative methods of [11]. However, one would be working in the space R
2k+

1 = R
2 (m +n )+ 1

which is of higher dimension than that of the space R
n+ m  

of (1). Other SOR methods for

solving linear programs have been developed elsewhere [12] which do not enlarge the space

of the original problem, however they contain an unknown but finite perturbation or penalty

parameter. The formulation (9) gets rid of the parameter at the expense of enlarging the

space of the problem. Another possible method for solving (9) is the conjugate gradient

method [15,14].

-14-
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